skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Almkhelfe, Haider"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Nanosized, well-dispersed titania particles were synthesized via a hydrothermal method using multiwalled carbon nanotubes (MWCNTs) as structural modifiers during the nucleation process to decrease aggregation. Synthesized TiO 2 /MWCNT composites containing different amounts of MWCNTs were characterized using N 2 physisorption, XRD, spectroscopic techniques (Raman, UV-visible, and X-ray photoelectron), and electron microscopy to illuminate the morphology, crystal structure, and surface chemistry of the composites. Photocatalytic performance was evaluated by measuring the degradation of acetaldehyde in a batch reactor under UV illumination. Average rate constants decrease in the following order: TiO 2 /MWCNT-1% > TiO 2 > TiO 2 /MWCNT-5%. Addition of MWCNTs beyond the optimum loading ratio of 1:100 (MWCNT:TiO 2 ) diminishes the effectiveness of the photocatalyst and the synergistic effect between MWCNTs and TiO 2 . The primary mechanism for photocatalytic activity enhancement in TiO 2 /MWCNT-1% is thought to be due to increased porosity, hydroxyl enrichment on the surface, and high dispersion of TiO 2 particles. 
    more » « less